Capillary Force in High Aspect-Ratio Micropillar Arrays
نویسندگان
چکیده
High aspect-ratio (HAR) micropillar arrays are important for many applications including, mechanical sensors and actuators, tunable wetting surfaces and substrates for living cell studies. However, due to their mechanical compliance and large surface area, the micropillars are susceptible to deformation due to surface forces, such as adhesive force and capillary force. In this thesis we have explored the capillary force driven mechanical instability of HAR micropillar arrays. We have shown that when a liquid is evaporated off the micropillar arrays, the pillars bend and cluster together due to a much smaller capillary meniscus interaction force while still surrounded by a continuous liquid body, rather than due to often reported Laplace pressure difference because of isolated capillary bridges. We have studied both theoretically and experimentally, the capillary force induced clustering behavior of micropillar arrays as a function of their elastic modulus. To this end, we have developed a modified replica molding process to fabricate a wide range of hydrogel micropillar arrays, whose elastic modulus in the wet state could be tuned by simply varying the hydrogel monomer composition. By minimizing the sum of capillary meniscus interaction energy and bending energy of the pillars in a cluster, we have derived a critical micropillar cluster size, which is inversely proportional to elastic modulus of micropillars. The estimated cluster size as a function of elastic modulus agrees well with our experimental observation. We have also explored the utility of the clustered micropillar arrays as ultrathin whitening layers mimicking the structural whitening mechanism found in some insects in nature. Finally, we have theoretically studied the capillary force induced imbibition of a liquid droplet on a model rough surface consisting of micropillar arrays. Our theoretical model suggests that due to shrinking liquid droplet, the imbibition dynamics does not follow the diffusive Washburn dynamics but progressively becomes slower with time. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Materials Science & Engineering First Advisor Shu Yang
منابع مشابه
Fabrication of hierarchical pillar arrays from thermoplastic and photosensitive SU-8.
By exploiting the thermoplastic and photosensitive nature of SU-8 photoresists, different types of hierarchical pillar arrays with variable aspect ratios are fabricated through capillary force lithography (CFL), followed by photopatterning. The thermoplastic nature of SU-8 enables the imprinting of micropillar arrays with variable aspect ratios by CFL using a single poly(dimethylsiloxane) mold,...
متن کاملCapillary flow through rectangular micropillar arrays
This work explores capillary flow through micropillar arrays with rectangular pillar arrangements. The effects of these configurations on permeability and capillary pressure are investigated for heat pipe wick applications. The permeability is described in terms of three dimensionless parameters: h=d; l=d, and S=d, where l and S are the edge-to-edge spacings in the xand y-directions, respective...
متن کاملSynthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays.
We introduce Synthetic Microfluidic Paper, a novel porous material for microfluidic applications that consists of an OSTE polymer that is photostructured in a well-controlled geometry of slanted and interlocked micropillars. We demonstrate the distinct benefits of Synthetic Microfluidic Paper over other porous microfluidic materials, such as nitrocellulose, traditional paper and straight microp...
متن کاملBio-nanotextured high aspect ratio micropillar arrays for high surface area energy storage devices
This paper presents fabrication and characterization of bio-nanotextured hierarchical nickel oxide (NiO) supercapacitor electrodes. The hierarchical electrode structure is created through self-assembly of Tobacco mosaic viruses (TMVs) on high aspect-ratio micropillar arrays. Enhanced assembly of the bio-nanoparticles was achieved by increasing TMV solution accessibility into the deep microcavit...
متن کاملOptimization of capillary flow through square micropillar arrays
This work compares several models for fluid flow through micropillar arrays to numerical simulations and uses them to optimize pillar dimensions for maximum fluid flow in a heat pipe application. Micropillar arrays are important for controlling capillary flow in microfluidic devices, and array permeability is a key parameter in determining fluid flow rate. Several permeability models are consid...
متن کامل